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Introduction Steps for Biomaker Validation

Four Steps to Biomarker Validation

Optimal Biomarker Generation and Validation:

1 Carefully designed study (begin with end in mind):

Targeted data collection
Include ‘orthogonal’ data types

2 Robust development of reproducible biomarker:

Data preprocessing and integration
Discovery, development, optimization (and adaptation!)

3 Validation types (predefined if possible):

Internal and external validation
Mechanistic or functional validation
Additional genomic profiling?

4 Last but not least: Transparency!
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Breast Cancer Often Runs in Families

http://openi.nlm.nih.gov



Breast Cancer

Sporadic
~87%

Familial
~13%

Collaborative Group on Hormonal Factors in Breast Cancer



Familial Breast Cancer

No Known
Risk Genes

~70%

Known
Risk Genes

~30%

Stratton and Rahman, Nature Genetics, 2008



Introduction Illustrative Exampe

Risk Subpopulations

No
Cancer

Cancer

No
Cancer

Cancer

No
Cancer

Cancer

BRCAX BRCA1/2

Family History
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Introduction Illustrative Exampe

Predicting Hereditary Breast Cancer

Goal: Develop a non-invasive biomarker for hereditary breast cancer risk

Key hypotheses or information to build our biomarker:

Rare or highly penetrant genetic variation impacting key pathways
(e.g. DNA repair)

Germline-driven mRNA degregulation as an intermediate risk
phenotype for familial breast-cancer susceptibility

Expression patterns in peripheral blood will enable prospective
identification of high-risk women who will develop breast cancer
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RNA Expression as a Variation Surrogate

SNVs

RNA Expression

Structural
Variation

Indels Epigenetic
Variation

Non-coding
RNA



Microarray Profiles of Peripheral Blood



Introduction Illustrative Exampe

Patient Cohorts

Location Type Patients
Utah Retrospective 124
Ontario Retrospective 36
Ontario Prospective 37
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Introduction Illustrative Exampe

Study Design Summary

Important elements of the study design:

Study patients recruited and data collected specifically for this study

Validation on a heterogenous population/dataset

Clear purpose for the study and ‘success’ is predefined

Collected expression array and DNA sequencing data (validation?
multi-omic biomarker?)
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Biomarker Generation Data Preprocessing and Integration

Goals of Personalized Genomic Medicine
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Biomarker Generation Data Preprocessing and Integration

Data Normalization Methods

Multi-array 
Methods

Single-array 
Methods

Initial 
Normalization

 Normalization After 
Arrival of Test Samples

Derivation of Personalized 
Medicine Model

Model 
Rederivation 
Necessary
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Biomarker Generation Data Preprocessing and Integration

Microarray/Sequencing Normalization Methods

Multisample Methods:

dChip (Li, PNAS, 2001)
QQ/RMA (Bolstad, Bioinformatics, 2003; Irizarry, Biostatistics, 2003)
RNA-seq: Conditional-QQ (Hansen, Biostatistics, 2012)

Single Sample Methods:

MAS5 (Hubbell, Bioinformatics, 2002)
fRMA (McCall, Biostatistics, 2010)
Barcoding (Irizarry Nat Meth 2009; McCall, NAR, 2012)
RPKM/FPKM (Mortazavi, Nat Meth, 2008; Trapnell, Nat Biotech
2010)

Single Array and Sequencing Integrative Methods:
SCAN-UPC (Piccolo, Genomics, 2012)
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

SCAN-UPC: Single Sample of Expression Estimates

Our approaches: Single Channel Array Normalization (SCAN), and
Universal Probability of Expression Codes (UPC)

Uses background within a single sample

Individual patient samples without any extraneous data

Can be applied to all platforms: one and two color arrays, RNA-seq
(UPC)

Naturally combines data across platforms (UPC)
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Biomarker and Personalized Medicine Workflows
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

SCAN-UPC: Single Sample of Expression Estimates
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Universal Probability of Expression Code (UPC)

SCAN-UPC Model Justification:
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Universal Probability of Expression Code (UPC)

For Affymetrix arrays:

Each component is N(Xθm, σ
2
m) (m = 1, 2) , where

xiθm = αmniT +
25∑
j=1

∑
k∈{A,C ,G}

βjkmIijk +
∑

l∈{A,C ,G ,T}

γlmn
2
ik ,

(Johnson et al., PNAS, 2006)
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Batch and Design Effects

No Normalization

Concentration
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RMA

RMA

Concentration
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SCAN → Consistent Across Array Designs

SCAN

Concentration
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Single Channel Array Normalization (SCAN)
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Universal Probability of Expression Code (UPC)

For two-color arrays:

1 Suppose
log(Yi) = (log(Yi1), log(Yi2)) ∼ N(mk,Σk)

where k is the G+C of the probe

2 Transform to mean center and remove chip and dye effects:

Zi = Σ̂
−1/2
k (log(Yi) − m̂k)

(Song et al., Genome Biology, 2007)

3 Apply a simple two-component mixture model
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Universal Probability of Expression Code (UPC)
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Universal Probability of Expression Code (UPC)

RNA-seq data:

Mapping errors, repetitive regions

‘Leaky’ transcription

Each component is N(Xθm, σ
2
m), where

xiθm = αm + GCiβ + Leniγ
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

Universal Probability of Expression Code (UPC)

RNA-Seq Data:

Activated T−cells

Logged Read Counts
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

(a) Normalized Array, Read Count (c) UPC Array and Seq
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates

(b) Normalized Array, RPKM (c) UPC Array and Seq
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Biomarker Generation SCAN-UPC: Single Sample of Expression Estimates
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Microarray active or  
RNA-Seq inactive subset:  

98.7% correspondence 
across platforms 
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to increased  
sensitivity of  
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Risk Prediction

Probability 
of HBC

Piccolo and Frey, JMLR, 2012



Utah – Predicted Risk
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Utah — ROC Curve

False positive rate
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Ontario – Predicted Risk
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Ontario — ROC Curve

False positive rate
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Top Pathway Results

PI3K Signaling System
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Epithelial Tissue Adhesion

Layayer and Lecuit, Nat Cel Bio, 2008
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Thank-you!
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